
Comparative Study: ACO and EC for TSP

Urszula Boryczka1 and Rafa l Skinderowicz1 and Damian Świstowski1

1 University of Silesia, Institute of Computer Science, Sosnowiec, Poland,
e-mail: uboryczk@us.edu.pl

Abstract. Evolutionary Computing (EC) and Ant Colony Optimization (ACO)
apply stochastic searching, parallel investigation as well as autocatalitic process
(or stigmergy) to solve optimization problems. This paper concentrates on the
Traveling Salesman Problem (TSP) solved by evolutionary and ACO algorithms.
We consider the sets of parameters and operators which influence the acting of
these algorithms. Two algorithmic structures emphasizing the selection problem
are discussed. We describe experiments performed for different instances of TSP
problems. The comparison concludes that evolution, which is exploited especially
in evolutionary algorithms, can also be observed in the performance of the ACO
approach.

1 Introduction

The work focuses on the application of evolutionary (EC) and ant colony (ACO) ap-
proaches to the Traveling Salesman Problem (TSP). It was the first application of the
ACO algorithm to a path optimization problem. The TSP was chosen for many reasons:
it is an NP-hard optimization problem and a standard test–bed for new algorithmic ideas
and good performance on the TSP is often taken as a proof of their usefulness. It is a
problem to which ACO algorithms are easily applied and it is an NP-hard optimization
problem. It is easily understandable, so that the algorithm behavior is not obscured by
too many technicalities. Our aim is not to show, which of these methods is better but
rather to point out the similarities and differences.

The first problem, discused in Section 2, is the EC and ACO data structures used to
solve the TSP. Therefore, different operators acting on these structures will be discussed
in the next section. As the parameters play an important role in both algorithms, they
are analyzed later in this work, where differences between them are emphasized (Section
4). The selection problem, of great importance in EC is also discussed for ACO. The
structure of populations of individuals presented for EC and ACO is discussed as the
structure of populations of the agents, called ants (Section 5). The final section de-
scribes the experiments which have been performed emphasizing similar performance of
both algorithms, with regard to the solution space searched while looking for the global
minimum.

Nowadays, the application of algorithms, with stochastic searching to solve optimiza-
tion problems is becoming more and more popular. Such methods as EC and ACO may
be included in the group of nature mimicking methods: in the case of EC – genetics [9],



and in the case of ACO – the mimicry of collective insects, very primitive entities able
to communicate with each other [8].

Both of these methods look at the analyzed problem differently as compared to tradi-
tional optimizing methods. They see the problem as a set of potential solutions coded in
a special way. These methods use non–deterministic (probabilistic) rules of choice. EC
search starts from a population of individuals. Similarly, in ACO, solutions are searched
for by many individuals – agents called ants. The basic difference between EC and ACO
is that in EC the starting point is fixed in stochastic way. In ACO, there is an initial
population of entities performing this step during the first cycle of the algorithm (using
a special form of memory and methods of communication).

2 Representation of the TSP Solution in EC and ACO

This work does not concentrate on genetic terminology and analogy with biology (es-
pecially genetics). Thus, we look at EC in a special way – from the point of view of
an entire chromosome, which, as opposed to a gene, is a basic element of the problem
representation and it undergoes changes according to the rules of genetics. In the case of
ACO, an element of the TABU–list is the smallest unit of the problem representation. Its
value may be compared with the value of a gene in the particular genetic representation
of the problem (e.g. path representation).

The definition of TSP in terms of EC is comparatively easy. TSP has the natural
evaluation function – the total length of tour, given the distances between cities. Having
a population of tours, we can easily compare any two of them. However, what is difficult
is to specify precisely the definition of tour representation. The most natural tour rep-
resentation is a list of cities visited while traversing. Unfortunately, this representation
is not suitable for genetic operators, especially for the crossover operator. Moreover, the
binary representation of the tour is not very good for the TSP. Besides, there are three
vector representations for the TSP [7], [10]: an adjacency representation, an ordinal rep-
resentation and a path representation. All these representations describe the tour as a
list of cities, the position of a city within the list and its coding being different. The path
representation is very useful and it is similar to the representation used by ACO, where
the sequence of cities representing a tour is stored directly in the TABU–list. This is
because the TABU–list includes the cities visited by an ant during one cycle of the ACO
algorithm.

Recapitulating the essential points, one may say, that the TSP representation is very
similar in both EC and ACO. The main difference lies in the moment of creation of
the first permutation of cities. In EC the initial permutation of cities, i.e. the initial
population, is created at random. In ACO the initial solution is obtained after the first
iteration of the algorithm, when each agent-ant remembers the visited cities in a specific
order. In addition, this process is continued for each agent independently.

3 Operators and Factors Altering Current Solutions

Consider the point of execution of the algorithms in which for EC we have a population
of the potential solutions represented by the sequence of numbers (assuming the path
representation), and for ACO – empty agents’ memories which must be filled in with



some data. We make in the case of EC the special swaps or sweeps in accordance with
the rules defined by genetic operators [7], [10].

Apart from the classic genetic operators like mutation, inversion and crossover, the
following three crossover operators for the path representation come into existence: a
partially–mapped crossover (PMX), an order crossover (OX) and a cycle crossover (CX).
The PMX, proposed by Goldberg and Lingle [10], creates a new individual by choosing a
tour sub–sequence from one parent and preserving the order and position of as many cities
as possible from the other parent. The subsequence of the tour is selected by choosing
two random cut points, which make boundaries for swapping operations. The OX [7]
creates the offspring by selecting a tour subsequence from one parent and preserving the
relative order of cities from the other parent. The OX crossover exploits one property of
the path representation – the order of cities. The CX, proposed by Oliver [10], creates an
individual in a such way that each city (and its position) comes from one of the parents.
The CX operator preserves the absolute position of the elements in the path sequence.
However the PMX, OX and CX operators have serious disadvantages [10].

Another promising operator is so–called Maximal Preservative Operator (MPX) in-
troduced by Miihlenbein in 1988. It works in a similar way to the PMX operator. Genetic
Edge Recombination Crossover (ER) was developed by Whitley in 1989. It is an oper-
ator which is suitable for the symmetrical TSP. The ER operator attempts to preserve
the edges of the parents in order to pass on a maximum amount of information to the
offspring. The breaking of edges is seen as unwanted mutation.

Grefenstette [10] proposed a class of heuristic operators that emphasizes the lengths
of edges. His algorithm defines the probability distribution over selected edges based on
their costs, the selection of the edges being based on this distribution. All the operators
discussed above work with the path representation in TSP.

A heuristic operator proposed by Grefenstette, works in a very similar way to the
ACO state transition rule. This rule called a random–proportional rule (1) describes the
probability with which ant k in city r chooses city s to move to:

pk(r, s) =


[τ(r,s)]·[η(r,s)]βP

u∈Jk(r)
[τ(r,u)]·[η(r,k)]β

if s ∈ Jk(r)

0 otherwise
(1)

where:
• τ(r, s) corresponds to the amount of the pheromone laid on edge (r, s),

• η(r, s) = 1
d(r,s) is the reciprocal of the distance d(r, s),

• Jk(r) is the set of cities which remain to be visited by ant k positioned at city r,

• β is a parameter which determines the relative importance of pheromone versus
distance (β > 0),

• q0 is a tunable parameter that allows exploitation/exploration procedures during
the decision making process.

In the case of ACO, the role of genetic operators is taken over by the transition rule
which causes alterations during the execution of the algorithm, which in turn are recorded
in the TABU–list.



4 Parameters of the Algorithms

The parameters used by the algorithms under consideration may be divided into two
groups:
a) related to the size of the population and the number of cycles, or generations, (quan-

titative parameters): for EC – the number of individuals in a population, for ACO
– the number of agents–ants solving the problem, or both algorithms – the number
of iterations (or populations).

b) related to the results of operations executed by the algorithms (qualitative parame-
ters): mutation and crossover operators for EC and parameters occuring in global
and local transition rules.

The values of parameters within both groups depend on the size of the problem to
be solved. The parameters of ACO from the second group occur in the global and local
pheromone updating rules. Once all ants have completed their tours, the pheromone
trail is updated on all edges according to the formula:

τ(r,s)(t, t + n) = (1 − α) · τ(r,s)(t) +
m∑

k=1

∆τk(r, s),

where:

∆τk(r, s) =
{

1
Lk

, if (r, s) ∈ tour constructed by ant k

0, otherwise

0 < α < 1, Lk is the length of the tour constructed by ant k, and m is the number of
ants.

The local updating rule utilize the parameter ρ:

τ(r,s)(t, t + 1) = (1 − ρ) · τ(r,s)(t) + τ0.

The qualitative parameters have a decisive influence on the speed and quality of results
generated by the algorithms.

5 EC and ACO Steps

Evolutionary algorithm exploits the well–known techniques in evolutionary computation
class. They maintain a population of individuals P (t) in iteration n. Each individual
represents a potential solution, and each solution is examined to obtain its fitness value.
Therefore, a new population (in iteration n + 1) is formed by the selected, fitter indi-
viduals. Some individuals of the new population undergo transformations (alterations)
caused by the genetic operators. This algorithm belongs to the group of methods called
Evolutionary Computing so its structure may be described as follows [10]:

procedure EvolutionaryComputing; { Evolutionary Algorithm }
begin
t := 0; { the discrete time }
initialize P(t); { the initial population }
evaluate P(t);
while (not TerminationCondition) do
begin



t := t + 1;
select P(t) from P(t - 1);
alter P(t);
evaluate P(t)

end
end;

The structure of an Ant Colony algorithm may be presented in the notation of Evo-
lutionary Computing in the following way:

1. Initialize - place ants in the starting cities.
2. Alter the population of ants:

a) move every ant through all cities,
applying a state transition rule,

b) evaporate the pheromone trail on edges
using the local pheromone updating rule,

c) calculate the fitness function,
i.e. the length of the tour found by each ant,

d) select the best-adapted individuals (ants) within generation,
e) update the pheromone value on appropraiate edges.

3. If the termination condition is not satisfied then repeat step 2.

4. Stop the algorithm.

Obviously, in this algorithm we do not accentuate evolution of the particular indi-
viduals. They neither intercross each other nor evolve in the meaning of EC. For the
present, we can only show the analogy between these two methods. In both EC and
ACO, the following phases are repeated: initialization, formulation a new population
and selection. Selection is executed on two different levels. In ACO, with the global–best
or local–best rules [3], it ends a cycle and determines whether to continue the execution
of the algorithm (in EC it works in a similar way). When we think about the selection
process as a choice mechanism – it occurs during a creation of the following element of
a new solution (the next element in the TABU–list) and we have used a roulette wheel
similar to that for EC.

6 Learning Process

Reinforcement learning (RL) is the most popular AI concept. The power of this method
comes from its simplicity and some differences between RL and the traditional supervised
learning paradigm. In this scheme, an agent learns from evaluative information only. The
scheme of RL tries to influence maximization of reinforcement values it receives in a long
period of time. This gives the possibility of forcing the behavior of the agent by rewarding
it for good performance and punishing it for bad. It is possible to use the RL mechanism
to learn a problem using the meta–heuristics, called ACO. The pheromone–updating rule
in ACO allocates larger amounts of pheromone to shorter tours. Thus, this rule is similar
to the reinforcement learning scheme in which better solutions get higher reinforcement
[6]. The pheromone trail laid on the edge plays the role of a delayed reward and memory
(TABU–list) for each agent that probably going to choose this edge. This constitutes an
indirect form of communication and co–operation between agents, and thus it is similar



to learning with delayed rewards or Q–learning – learning basing on Q-values of rewards
[4], [6].

The work of EC is also based on a probabilistic choice. The main stage in EC is the
selection of individuals for reproduction and creation the new population. Competitive
learning (CL) (Grossberg 1976, Kohonen 1984, Rumelhart & Zipser 1986) was developed
in artificial neural networks. In the case of EC, the selection mechanism added to the
competitive learning algorithm to achieve the intended goal play an important role.
Such an algorithm is called competitive and selective learning (CSL). In EC we observe
this competitive learning. The principle of competitive learning is simple and reasonable
when a population with many good adapted individuals has been obtained. The selection
mechanism utilized here is based on the fitness measure [7]. Both types of algorithms
exhibit more complex behavior. Rick L. Rioto from the University of Michigan observed
that in EC latent learning occurs. We believe that this mechanism occurs in AA as well.
The mechanism is similar to learning process among rats, which after a period of time
quickly find the way out of a maze [9].

7 Experiments and Results

In addition to the analysis of the theoretical problems, the practical performance of
the algorithms was examined. The computer implementations of ACO and EC using
the path representation were created. In the implementation of EC two operators: the
ER crossover and the MPX were applied. The task was to find a solution to the TSP
instances.

The TSP problem was tested using the following sets of parameters:

ACO: EC:
(elitist strategy) τ0 = 1.15E − 07 pc = 0.95 (MPX, ER operator)

α = 0.1 pm = 0.015
ρ = 0.01 NI = n
q0 = 0.85 roulette wheel

We analyzed different strategies and generative policies in ACO [2]. We found the
elitist strategy the best which, what is similar to the experiments performed by Dorigo
[5]. Analyzing the experimental results, we can determine the values for parameters and
choose the appropriate operators for EC. One can observe the powerful influence of the
choice of parameters’ values, as well as the solving problem itself. These problems were
analyzed in our previous works, e.g. [1], [2].

Below we present the results of tests for several TSP problems taken from the TSP-
LIB95 at www.iwr.uni-heidelberg.de. The investigations were carried out for both
algorithms independently, but we tried to achieve the best results in the same “environ-
ment”. We fix the number of iterations (100 and 200) and experiments (20). Number of
individuals (ants) is equal to the number of cities.

We summarize the results in Table 1 and Figure 1.
For both algorithms, the average and best solutions are comparable (Figure 1), espe-

cially in the experiment with 200 iterations. Here, the algorithms almost always attain
very good solutions which are close to each other. The bigger differences among the val-
ues obtained by ACO and ET were observed for bigger instances of TSP (the minimum
relative error – see Tabble 1). The analysis of the average tour lengths in consecutive



Table 1. The best results for analyzed problem in experiments with 100 and 200 iterations (20
repetitions).

problem the best known ACO (min.) ACO (aver.) EC (min.) EC (aver.)
instance solution rel. err. rel. err. rel. err. rel. err.

lin105 14379 0 0.47 0 1.62

pr136 96772 0.29 2.34 2.21 6.54

u159 42080 0 0.88 1.35 7.17

rat195 2323 0.56 1.68 11.66 16.93

kroB200 29437 0.61 3.13 4.46 11.20

ts200 126643 1.41 2.26 1.49 10.47

0

5

10

15

20

25

30

35

40

45

50

lin105 pr136 u159 rat195 kroB200 ts225

Problem instance

R
e

la
ti

v
e

e
rr

o
r

[%
]

ACO 100

EC 100

ACO 200

EC 200

Figure 1. Comparison of ACO and EC for two experiments.

iterations shows that the Ant Colony Algorithm improves its solutions in the first 200
iterations, while the Evolutionary Algorithm give a lower performance. In the biggest
instances of TSP, in both algorithms, the results are weakly different. This is a conse-
quence of the definition of the crossover operators.The created offspring does not inherit
enough adequate information from its parents.

8 Conclusions

From the experimental results showed in the previous section we can draw the following
conclusions: heuristics used in ACO, especially elitism and the leader strategy, cause
better performance as compared to EC. The number of agent–ants in ACO should be
equal to the number of cities (the same condition refers to the number of individuals in
EC). Enlarging the number of ants in ACO results in finding good solutions in shorter
time. For the similar enlargement of the population GA give the solutions of the same
or worse qualities. By increasing the probability of the crossover operator in EC we get
better local minima but results obtained are worse than in ACO.



Comparing the algorithms, we claim that the idea of algorithm’s evolution allows
ACO to achieve better results in shorter time. In ACO, the co–operation among ants
and synergetic effect steer the algorithm towards better solutions.

EC achieve good results too, but an unsatisfactory defined set of evolutionary oper-
ators (for altering the individuals) may result in a larger number of executed iterations.
The ER crossover operator reduce the execution time of EC.

Bibliography

[1] U. Boryczka. Influence of the Problem Representation over the Selection of the
Genetic Operators in the Genetic Algorithms. In Proceedings of the Conference
,,Expert Systems”, Wroc”law, 1997.

[2] U. Boryczka and M. Boryczka. Generative Policies in Ant System. In Proceedings
of the Conference EUFIT’97, pages 857 – 861, Aachen, 8 – 11 wrzesie 1997.

[3] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant Colonies.
In F. Vavala and P. Bourgine, editors, Proceedings of First European Conference on
Artificial Life, pages 134 – 142, Cambridge, 1991. MIT Press.

[4] A. Colorni, M. Dorigo, and V. Maniezzo. An investigation of some properties of Ant
System. In Proceedings of the Parallel Problem Solving from Nature Conferrence
(PPSN92), Bruksela, 1992.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. Positive Feedback as a Search Strategy.
Technical Report 91 – 016, Politechnico di Milano, Wochy, 1991.

[6] L. M. Gambardella and M. Dorigo. Ant–Q. A Reinforcement Learning Approach to
the Traveling Salesman Problem. In Proceedings of Twelfth International Conference
on Machine Learning, pages 252 – 260, Palo Alto, CA, 1995. Morgan Kaufman.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison–Wesley, 1989.

[8] S. Goss, R. Beckers, J. L. Deneubourg, S. Aron, and J. M. Pasteels. How Trail
Laying and Trail Following can solve Foraging Problems for Ant Colonies. In R. N.
Hughes, editor, Behavioural Mechanisms for Food Selection, volume G20, Berlin,
1990. Springer Verlag.

[9] J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

[10] Z. Michalewicz. Algorytmy genetyczne + struktury danych = programy. WNT, 1996.


